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Almtraet--The mterfacml area concentration is one of the most important parameters m analyzing 
two-phase flow based on the two-fired model. The local instantaneous formulation of the mterfaclal 
area concentratmn Is introduced here. Based on thts formulation, time and spatial averaged interfactal 
area concentrations are derived, and the local ergodm theorem (the equivalency of the time and 
spattal averaged values) ts obtained for stattonary developed two-phase flow. On the other hand, 
the global ergoflac theorem ts derived for general two-phase flow. Measurement methods are discussed 
m detail m relatmn to the present analysis. The three-probe method, with which local interfactal 
area concentratton can be measured accurately, has been proposed. The one-probe method under 
some staUst~cal assumptmns has also been proposed. In collaboration with the experimental data 
for the interfaoal velocity, radial profiles of the local mterfactal area concentration are obtmned 
based on the one-probe method. The result mdtcates that the local mterfacial area concentratton 
has a peak value near the tube wall in bubbly flow. This ts consistent with the near wall peak of 
local votd fractton separately observed. In slug flow it shows a higher value m the central regnon 
of the tube for that parttcular set of data 

1. INTRODUCTION 

In order  to analyze the thermal  hydraul ics  of two-phase  flow, various formula t ions  such 
as the  homogeneous  flow model ,  drif t-f lux mode l  (Zuber  & F ind ley  1965; Wal l is  1969; Ishii  
1977), and  two-f luid model  have been p roposed  (Ishii 1975; De lhaye  1968). A m o n g  these 
models ,  the two-f luid formula t ion  can be considered the mos t  accurate  model  because of 
its deta i led  t rea tment  of the phase  in teract ions  at  the interface. The two-f luid  model  is 
fo rmula ted  by  consider ing each phase separa te ly  in terms of two sets of conservat ion 
equat ions  which govern the balance  of mass,  momen tum,  and  energy of each phase. These 
ba lance  equat ions  represent  the  macroscop ic  fields of each phase and  are ob ta ined  f rom 
proper  averaging methods .  Since the macroscopic  fields of each phase are  not  independent  
of the o ther  phase,  the phase  in teract ion terms which couple  the t r anspor t  of mass,  mo-  
mentum,  and energy of each phase appear  in the  field equations.  I t  is expected tha t  the 
two-f luid model  can predict  mechanical  and  thermal  nonequi l ibr ium between phases  ac- 
curately.  However ,  it is noted  tha t  the  interfacial  t ransfer  terms should  be mode led  accura te ly  
for the two-f luid mode l  to be useful. In  the present  s ta te  of the art ,  the  const i tut ive  equat ions  
for these interfacial  terms are the weakest  l ink in the two-f luid model .  The  difficulties arise 
due to the compl ica ted  transfer  mechanisms  at  the interfaces coupled  with the mot ion  and  
geomet ry  of the interfaces. Fur the rmore ,  the  const i tut ive  equat ions  should  be mode led  by 
macroscop ic  variables based  on p roper  averaging.  A three-dimensional  two-f luid model  has 
been ob ta ined  by using tempora l  or  s tat is t ical  averaging (Ishii 1975). F o r  mos t  pract ical  
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apphcauons, the model developed by Ishii (1975) can be simplihed to the following forms 

Contmuity equatton 

aCtkp_______~k + ~7" (ctkPkV,) = Fk ; [1[ 
at 

Momentum equation 

aakpkVk 

0t 
+ V'(akPkVkVk) 

= - -ak~Pk  + ~7" ak(  ~ ,  + r'k) + ctkp,g + vk, Fk "+- M,~ - Va~  • r , .  [2] 

Enthalpy energy equation 

a a , p k H ,  

~t 
+ V "  ( a k p k H , v , )  

D k q ~k', 
= - v .  + + + H ,r, + + [3] 

Here F k, M,k, r , ,  q~, and • ,  are the mass generation, generalized interracial drag, interracial 
shear stress, interfacial heat flux, and dissipation, respectively. The subscript k denotes k 
phase, and i stands for the value at the interface, ak, Pk, Vk, Pk, and Hk denote the void 
fraction, density, velocity, pressure and enthalpy of k phase, whereas ~, ,  r~,, ~k, q~, and g 
stand for average viscous stress, turbulent stress, mean conduction heat flux, turbulent heat 
flux and acceleration due to gravity. Hk, is the enthalpy of k phase at the interface; thus 
it may be assumed to be the saturation enthalpy for most cases. Ls denotes the length scale 
at the interface, and 1/L~ has the physical meaning of the interfacial area per unit volume 
a, (Ishli 1975). Thus. 

1 Interracial area 

L, - a, = Mixture volume" [4] 

The above field equations indicate that several interfacial transfer terms appear on the 
right-hand sides of the equattons. Since these interracial transfer terms also should obey 
the balance laws at the interface, interracial transfer conditions could be obtained from an 
average of the local jump conditions (Ishii 1975). They are given by 

~ F k  = 0 ,  
k 

~ M , k  = 0 ,  
k 

[5] 

Therefore, constitutive equations for M,k, q~,/Ls, and " qz~/Ls are necessary for the interfaclal 
transfer terms. The enthalpy mterfacial transfer condition indicates that specifying the heat 
flux at the interface for both phases is equivalent to the constitutive relation for F ,  if the 
mechanical-energy transfer terms can be neglected (Ishii 1975). This aspect greatly simplifies 
the development of the constitutive relations for interfacial transfer terms. 

By introducing the mean mass transfer per unit area, m k, defined by 

F k = a ,mk  , [6] 
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the interracial energy-transfer term in [3] can be rewritten as 

507 

FkH~ + -~ = a,(mkHk, + qlkt,). [7] 

The heat flux at the interface should be modeled using the driving force or the potential 
for an energy transfer. Thus, 

qg = h~(T, - Tk) ,  [8] 

where T, and Tk are the interfacial and bulk temperatures based on the mean enthalpy 
and h k, is the interracial heat transfer coefficient. A similar treatment of the interracial 
momentum transfer term is also possible (Ishii & Mishima 1980). In view of the above, the 
importance of the interracial area a,, in developing a constitutive relation for this term is 
evident. The interfacial transfer terms are now expressed as a product of the interracial area 
and the driving force. It is essential to make a conceptual distinction between the effects 
of these two parameters. The interracial transfer of mass, momentum, and energy increases 
with an interracial area concentration toward the mechanical and thermal equilibrium. 

Thus, in general, the interracial transfer terms are given in terms of the interracial area 
concentration as and driving force (Ishii 1975; Ishii & Mishima 1980; Ishii et aL 1982) as 

(Interracial transfer term) ,~ a, X (Driving force).  [9] 

The area concentration defined as the interracial area per unit volume of the mixture 
characterizes the first-order geometrical effects; therefore, it must be related to the structure 
of the two-phase flow field. On the other hand, the driving forces for the interracial transport 
characterize the local transport mechanisms such as the turbulent and molecular diffusions. 

In two-phase flow systems, the void fraction and interracial area concentration are two 
of the most important geometrical parameters. The void fraction is treated as a variable to 
be solved from a set of balance equations, whereas the interracial area concentration should 
be specified by a constitutive relation or by introducing an additional transport equation 
for a, (Ishii 1975; Ishii & Mishima 1980). As the above formulation indicates, the knowledge 
of the interracial area concentration is indispensable in the two-fluid model. 

Although a number of studies have been made in this area, the interracial area con- 
centration in two-phase flow has not been sufficiently investigated both experimentally and 
analytically. Most of the previous studies are for steady-state flow without phase change. 
Available experimental data are limited to volume-averaged interracial area concentration 
over a section of a flow channel. Detailed review of these are given in references (Ishii & 
Mishima 1980) to (Kocamustafaogullari & Ishii 1983). There are a number of shortcomings 
in measurement techniques. Furthermore, there are very few established theoretical foun- 
dations for relating this interracial area to some easily measurable quantities. In particular, 
there seems to be no information available on a local value of the interfacial area concen- 
tration. However, this local interfacial area concentration is very important for two- or 
three-dimensional analyses using the two-fluid model. 

There is one problem dealing with the definition of the interracial area concentration 
locally and instantaneously. Since the Lebesque measure of an interface is zero, the local 
instantaneous interracial area concentration cannot be represented by an ordinary function 
(Schwartz 1950; 1951; 1961). To avoid this problem, an integral method has been used in 
the analysis of the interracial area (Ishii 1975; Delhaye 1968). However, by introducing a 
distribution which is a generalized function (Schwartz 1950; 1951; 1961), one can express 
the local instantaneous interfacial area concentration. 

Based on this local instantaneous formulation and the assumptions of the statistical 
characteristics of two-phase flow, fundamental relations for the interfacial area concentration 
have been derived. These equations relate the local value of the interfacial area to observable 
parameters of the two-phase flow. Based on this theory, some measurement techniques of 
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the local mterfacial area concentration have been proposed. Finally, using the exastmg 
experimental data on flow measurements, radial profiles of the local interfacial concentratmn 
have been obtained. 

2 LOCAL INSTANTANEOUS INTERFACIAL AREA CONCENTRATION 

By considering a simple system shown in figure I, where there Is only one gas-liquid 
interface, the location of the interface Xo is represented in an x coordinate as 

x = Xo [10] 

Now a control volume near the point T is defined by 

1 1 
y - ~ x  < x < T  + ~ A x ,  [ l l ]  

where Ax is the size of the control volume. Then the spatial-averaged interfacial area 
concentration ~,P in the control volume Is gaven by 

1 A x  
a¢ - -  &x f o r ~ / - x o l  < - - ' 2  

= 0  
~uc 

for ~y-  Xol > -~--" • 

[]2] 

By taking the limit of &x ~ 0, the local interracial area concentration a,(x) in a one- 
dimensional form is given by 

a,(x) = 6(x - Xo). [13] 

Here 6(x - x0) is the delta function (Dirac 1958; Schwartz 1961) which satisfies 

f ®  8(x - x o ) d x  = 1, 6(x - x 0 )  = 0 f o r x  =#=Xo. [14] 
-oe  

One of the special characteristics of the delta function ts that for any smooth function ~b(x) 
it gives 

f =  6(x - Xo) ~,(x)dx = ~(Xo). [15] 

Y/ 

I I 
~ A x  I 
r~ 2.1 

J ~ 

i 4 

I ~Interface 

I I 

E ~ 

~':X 0 

F i g u r e  l L o c a l  i n t e r r ac i a l  a r e a  c o n c e n t r a t i o n  in  o n e  d i m e n s i o n  
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This result can be extended to any gas-liquid interface in a three-dimensional space. By 
considering a moving gas-liquid interface which is smooth and represented by 

f(x,y,z,t) = O, [16] 

the local instantaneous interacial area concentration a, is given by 

a,(x,y,z,t) = ~grad f l  8(f(x,y,z,t)), [17] 

where Igrad f[ is defined as 

[grad fl = V'grad f. grad f = V xax! + xayl (all2 q- " [18] 

In bubbly or droplet flow, the gas-liquid interface is composed of many separate 
surfaces of bubbles or droplets. For this case, the surface of the j t h  bubble or droplet is 
represented by 

fj(x,y,z,t) = O. [191 

Then the local instantaneous interracial area concentration is given by 

a,(x,y,z,t) = ~ ~grad fj[ 8(fj(x,y,z,t)). [20] 
J 

The above analysis shows that the local instantaneous formulations of interfacial area 
concentration can be obtained in terms of a distribution, as in [201. This formulation is 
valid for any flow regime of two-phase flow. 

Since the distribution 8(x - xo) is not observable experimentally, it is necessary to 
apply appropriate averaging of [17] or [20] to obtain a measurable representation of the 
interracial area concentration. Time and spatial averaging will be discussed in this relation 
in the next section. 

A. Spatial averaging of interfacial area 
In general, there are three types of spatial averaging of a,(x,y,z,t), which are linear, 

surface, and volume averaging. 
Now, in view of its practical importance for the present study, the linear averaging 

~,~ along the z axis is discussed in detail. For fixed Xo, Yo, and to, the spatial average of 
[20] over length L is given by 

a,~ (Xo,Yo,to) l f~ z + L = a,(xo,Yo~,to)dz 

-- L [ g r a d  f j[ 8 ( f  j(xo,Yo,Z, to))dz . 

[211 

By defining zj as the value which satisfies 

fj(Xo,Yo,Z/,to) = O, [22] 

[21] can be rewritten as 

 Xo,yo,to) = -L W a d  f j l /  • [23] 
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Here the right-hand side is calculated at (xo,Yo~.:,to) and for j t h  interface sansfymg 
z < zj < z + L. By denoting the angle between the z axis and the direction of the lth 
surface normal vector at (xo,Yo,Z/,to) as 0/ (see figure 2), it can be shown that 

cos O: = ~ / [ g r a d f : j .  [24] 

Therefore, [23] becomes 

af" (xo,Yo,to) = ~ - -  
1 ( ~ )  / 

cos O: L 
[25] 

where (]~) denotes the number of interfaces within the domain. Here j is arranged such 
] 

that zj is in increasing order, 

Z • - - Z /  I < Z j  "~ Zj_+_ 1 - -  < Z JV L [26] 

Furthermore, it is assumed that the following uniformity of the two-phase flow exists m 
the z direction for a reasonably large number of samples, where l is the average distance 
between interfaces in the z direction: 

n 

lim - -  
~-~2n + 1/=_.  

Iz j+, - zjl = l [27] 

Then it can be shown that for large L,  

[28] 

Substituting [28] into [25], one finally obtains 

-dpz (Xo,Yo,to) -- 
1 1 
l cos 0 '  

[29] 

Here (1/cos 0) is the reciprocal of a harmonic mean of cos 0j given by 

cos 0 -  ~ ' 
[30] 

z d i r e c t i o n  

j t h  i n t e r f a c e  

Figure 2 Angle between n, (z direction) and nj 
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On the other hand, by denoting the number of bubbles or droplets per unit length of 
z axis by N,, l can be given by 

1 
l -- 2N," [31] 

Here the factor 2 indicates that bubble or droplet has two interfaces (upper and lower) in 
the z direction. Then [29] can be rewritten as 

-d~ (xo,Yo,to) = 2 N ,  - -  
1 

cos O" [32] 

Equation [32] implies that the interracial area concentration can be obtained by measuring 
the number of bubbles or droplets per unit length and the harmonic average of cos Oj along 
z direction. 

B. Time averaging o f  interfacial area 
For fixed x0, Yo, and zo, the time averaging of [20] over interval fl  is given in terms 

- - t  of the time-averaged area concentration a, as 

_ 1 f ,+a 1 l f /+n ~ a d  fjl $(fj)dt a~ (xo,Yo,Zo) = -~ % a,(xo,Yo,Zo,t)dt = f l  j [33] 

Now tj is defined as the time which satisfies 

f j (Xo~Yo~o, ty)  = O . [34] 

Then [33] can be rewritten as 

a, ~ ad f~l/ at (xo,Yo,Zo,tj), [351 

which applies for j satisfying t < tj < t + fl.  
By defining ~bj as the angle between the velocity of the j t h  interface, %, and the 

direction of the surface normal vector at (xo,Yo,Zo,t~) (see figure 3), the following relation 
can be obtained. 

I g r a d f y  - d ~ # o s  ~," [361 

Substituting [36] into [35], one gets 

1 ~ 1 (~') 
(X o,Y o,Zo) 

1 [37] 

j th interface 
Figu re  3. A n g l e  be tween  v 0 a n d  nj. 
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for a l l j  satisfying t < tj < t + El. The above result has been obtained also by Ishfi (1975) 
and Delhaye (1976; 1980) using the integral method. 

Now j is rearranged so that t I is m increasing order as 

--< ~._~ < l: < t:+~ < t:+~ < - - .  [381 

Then by assuming the following umformity of the time intervals with mean value ~" 

h m - - 1  ~ it j + ' - t ' l  
, ~ 2 n  + ls :_o  

= r ,  [39] 

one obtains the following relation for large II, 

Substituting [40] into [37] yields 

1 1 
- '  ( X o , Y o , Z o )  -- . [ 4 1 ]  at 

~" ~,tcos 

Here the reciprocal of a harmonic mean of ~v,j ~cos <hi is given by 

[42] 

Now if the number of bubbles or droplets which pass the point (Xo,Yo,Zo) per malt 
time is denoted by N, ,  then ~- can be given by 

1 
r - -  [43] 

2N, 

Here the factor 2 indicates that one bubble or droplet passing (x0,Yo,Zo) has two interfaces 
associated with it. Thus, [41] can be rewritten as 

1 
a,-' (x0,yo-~0) = 2N,  - - ~ , k ; o s  4' " [44] 

This equation indicates that the ume-averaged interracial area concentration can be obtained 
by counting N, and knowing ~v,j~cos tkj for each interface. 

If one assumes that 1/tv,jl and 1/cos dpj have no correlation, one obtains 

1 1 
m o  p a~ (xo,Yo,.Zo) = 2.N t [v,i cos dp [45] 

where 

/ ,46  
and 

c o s  c o s  
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C Ergodic hypothesis of interfacial area concentration 
In the previous sections, spatial and time averaging of the interfacial area concentration 

has been discussed. However, there is one interesting and particularly important problem 
to consider. This is related to the ergodie hypothesis. It is essential to know under what 
conditions the time and spatial averages coincide. A general answer to this problem is quite 
difficult to obtain and beyond the scope of this paper. However, for stationary and developed 
two-phase flow this ergodic hypothesis can be demonstrated as shown below. 

First, the integration of a,(x,y,z,t) in volume domain V and time domain [l is considered. 
This is denoted by I(V, II) and given by 

I(V, II) = f f f fv.na,(x,y,z,t)dx dy dz dt. [48] 

This integral represents the total area of interface in the volume domain V and over the 
time interval II. The sequential integration in time domain 11 and volume V coincides with 
I(V, II); thus, 

f fSrlfna,(x,y,z,t)dtldxdydz=fn[fffva,(x,y,z,t)dxdy dz}dt. [49] 

The average value of the interfaeial area concentration can be obtained by dividing [49] by 
VII. Then, in view of [33], [49] can be rewritten as 

--p3 t 
--t = ~ 3 ,  [501 a, a, 

where operator--p 3 denotes volume averaging. This shows that the volume average of the 
time-averaged local interfacial area concentration is identical to the time average of the 
volume-averaged concentration. This result is similar to that which Delhaye has proved 
based on the integral method using the Leibnitz rule (Delhaye 1976; 1980). Equation [50] 
might be called the overall ergodic theorem. Although [50] does not require any statistical 
assumptions on the characteristic of two-phase flow, its validity is limited to finite volume 
and time domains. However, this theorem shows a very important relationship between the 
time and spatial averages. The ergodic theorem indicates that these two averages are con- 
sistent and they represent fundamentally similar physical quantifies. It is shown below that 
by introducing some additional conditions, one can obtain the ergodic theorem which is 
valid locally. 

The integration of a,(x,y,z,t) in the domain of z from z to z + L and t from t to 
t + II is defined by 

f fL a,(x,y,z,t)dz dt. [51] 1 ( L , a )  = , .  

This integral has an important physical meaning because it represents the area of interface 
in the domain from z to z + L and from t to t + II. Now by changing the sequence of 
integrations, 

[521 

Thus, by dividing [52] by L f~ one obtains 

[53] 
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The above equatmn is a special case of the general ergodic theorem for the mterfacml 
area concentration given by [50]. An ergodic theorem applicable to the local mterfaclal area 
concentration can be obtained by considering statmnary and developed two-phase flov, 
For this type of two-phase flow, appropriately averaged two-phase flow parameters are 
independent of Ume and axial location. By applying these characteristms to the mterfacmt 
area concentration, the following results can be obtained: 

- t  1 f t  t+l l  a, ==_ -~ a,(x,y,z, t)dt = A(x ,y )  I54] 

and 

1 ~z z+L 
a~ ~-- -~ a,(x,y,z, t)dz = B ( x , y ) ,  [55] 

where z IS the direction of flow. By substituting [54] and [55] into [53] and integrating it, 
~t can be shown that 

lf~ z+L i f ,  '+" A (x, y )dz  = -~ B (x, y )dt  . [56] 

This can be satisfied for arbitrary values of x and y only if 

A(x , y )  = B ( x , y ) .  [57] 

Therefore, for stationary and developed two-phase flow, the linear averaging ~,~ and the 
time averaging ~ become identical when the linear averaging is taken along the flow 
direction. Thus, 

~,~ = a,-' (for stationary and developed flow). [58] 

In comparison with the general ergodic theorem given by [50], [58] can be called the local 
ergodic theorem. From [29] and [41] this ergodic theorem can be modified to 

1 1 1 1 
- - [591 /cos 0 r~,~eos @ 

The local ergodic theorem given by [58] is quite important in terms of practical applications. 
This is because the theorem indicates that the line-averaged interracial area concentration 
can be obtmned from the time-averaged local interfacial area concentration. The latter can 
be related to measurable quantities in a two-phase flow system. For example, the time- 
averaged local interfacial area concentration can be measured from the number of bubbles 
or drops and the interfacial velocity as shown in [44]. 

3 METHOD OF MEASUREMENT OF LOCAL INTERFACIAL AREA CONCENTRATION 

As discussed in the preceding sections, there are two possible methods for measuring 
the local interracial area concentration. The first approach is to use the principle indicated 
by [32]. Equations [30] and [31] show that one has to measure the number of bubbles or 
droplets and a direction cosine of a normal vector of each interface in the sufficiently large 
z axis distance between z and z + L. For this, it is necessary to use a sensor which scans 
distance L in a negligible time duration. In other words, the sensor velocity must be much 
larger than the velocity of interfaces. An optical technique such as a photographic method 
may be applied for this purpose. An attempt has been made based on this method (Veteau 
1981). However, at present, this approach has a limited success only for very low void 
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fraction two-phase flow. At higher void fraction, the light scattering and refraction at 
multiple interfaces become a very serious problem. Due to these difficulties in the experi- 
mental technique, a complete measurement of the local interfacial area concentration based 
on [30]-[32] has not been accomplished yet. In relation to the optical technique, there is 
a light attenuation method which is based on a different measuring principle. Several attempts 
have been made using this method (Veteau & Chariot 1981; Trice & Rodger 1956; Ohba 
1978). 

Another approach is to use a principle indicated by [44]. In view of [42] and [43], this 
method requires a sensor located in a fixed point in two-phase flow and being capable of 
measuring the number of bubbles or droplets, their interfacial velocity and the angle between 
the interfacial velocity and normal vector of the interface. For this purpose, an electrical 
resistivity probe, optical probe, and anemometer which are often used in two-phase flow 
measurements (Hewitt 1976; Banerjee &Lahey  1981) may be suitable. In what follows, the 
measurement using an electrical resistivity probe will be discussed in detail. 

Figure 4 schematically shows a double-sensored electrical resistivity probe. Sensors 1 
and 2 detect gas and liquid phase by means of the difference between gas and liquid electrical 
resistivity. Therefore, from the electrical signals out of these sensors, a gas-liquid interface 
can be detected. Therefore, using these sensors, the number of interfaces passing the probe 
per unit time N, can be measured. Furthermore, by measuring the time difference for an 
interface to pass sensors 1 and 2, the velocity of interface passing the probe can be measured. 

Now consider a unit vector n, with direction the same as that of a double-sensored 
probe (figure 4). Its direction cosines are represented by (cos ~x, cos ~y, cos r/,). The 
position of sensor 1 is given by (xo,Yo,Zo); then the position of sensor 2 is given by (x0 + 
As cos ~ ,  Y0 + As cos qgy, z0 + As cos 7,). By considering t h e j t h  interface passing 
the sensors 1 and 2, with the passing velocity of v,j and the time interval of At:, the following 
relation exists: 

As 
UsJ - -  a " t j "  [ 6 0 ]  

Since the j t h  surface is represented by [19], the surface equation should satisfy 

f j (xo,Yo~o,t j )  = O, [61] 

f j (xo + As cos ~/x, Y0 + As cos ~ , z o  + As cos "t/,, tj + Atj) = 0 ,  [62] 

where tj is the time when the j th  interface passes the sensor 1. When As is small, [61] and 
[62] give the approramate relation 

at'. 
cos ~ + cos ~ ,  + cos 77, = - "-J-/v,j . 

ax ay az ~ t  
[63] 

Doub(e Sensored Probe 

se~SO( "~ 

j th Interface 

Figure 4. Double-sensored probe and jth mterface 
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Equation [63] indicates that It IS possible to calculate the value given by [36] by usmg three 
double-sensored probes with a common sensor. It is schematically shown in figure 5. The 
unit vector and its direction cosines for probe k are represented by n,k and (cos "O~k, 
cos "0yk, COS ~/,k) with k = 1, 2, 3. The passing velocity of t h e j t h  interface over probe k 
is denoted by u,kj. 

The directions of three probes can be made independent, which ~mplies that the de- 
terminant [A 01 should satisfy 

COS "Oxt, COS 'Qj, l, COS 17: I 

IA0l --= Icos ~ 2 ,  cos ~Ty=, cos "0,2 ~ 0 .  
i cos )/x3, cos ~)y3, cos "0,3 

[64] 

Under this condition [63] has a solution. From this solution it can be shown that 

VIA , l  = + IA=I = + IA31 = 
(iv,~icos 4 ) j ) - '  = , [65] 

VIA01' 

where IA , I ,  IA=I, and IA34 are given by 

1 1, c o s  ~ y l ,  c o s  ~,I 

I A ,1 ~ - -  l,l' cos r/,~, cos r / , 2  , 
UsIJ COS "~y3, COS ~:3  

1 E °s r/xt' l, cos 
).4 21 ~ - -  ~os "0x2, 1, cos r),2 , 

v~2j os "Qx3, 1, cos r/z 3 

1 i os ~=1, 
LA31 --= - -  os 71x2, 

Us3J OS T/x 3, 

COS r/y I, 1 

cos r/y2, l l • 
c o s  ~>,3, 

[66] 

[671 

[68] 

If three orthogonal probes are used, for example, by chosing x, y,  and z as the directions 
of the three double-sensored probes, then the result can be simplified to 

~I = H + + 
[691 

Thus the local time-averaged mterfaclal area can be measured by three inteffacial velocaty 
components. Although in principle this method gives accurate measurements of an interfaclal 

Probe 2 
Probe3 

k Sensor2 / 

Sensor I 

Figure 5 Three double-sensored probes 
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area concentration, there are some problems in terms of practical applications. In deriving 
[65] from [61] and [62], it has been assumed that As is small. In view of the effect of 
curvature of bubble or droplet interfaces, the accuracy of the measurement increases as As 
decreases. On the other hand, [60] indicates that Atj decreases with decreasing As. This 
implies that one has to measure smaller Atj as AS decreases. Then the accuracy of measuring 
Atj and that of vsj decreases as AS becomes smaller. Therefore, in practical measurements, 
the determination of optimum AS should be an important problem which requires utmost 
attention. 

The above described method based on the three double-sensored probes may be difficult 
to apply if the required sensor distance is very small. It is evident that As should be 
considerably smaller than a bubble or drop diameter. Furthermore, deformations of inter- 
faces by the probes should also be carefully examined. It can be said that this method will 
encounter increasing difficulties as the fluid particle size becomes smaller. In view of the 
above, a simpler probe method which can be applied to many two-phase conditions is 
highly desirable. One possiblity is to use a single double-sensored probe. However, in this 
case it becomes necessary to assume certain statistical characteristics of two-phase flow. 

Now a double-sensored probe located in the z direction is considered where the mean 
flow is assumed to also be in the z direction. The velocity and the normal unit vector of 
the j t h  interface, v,j and nj, can be given in terms of unit vectors nx, ny, and n,, using 
angles with z and y axes given by (aj,/3j) and (/x j,%) and shown in figures 6 and 7. Thus, 

% = tv,j[{cos % n, + sin % cos /3j ny + s m  % sin /3j n~ I , 

nj = cos /,j as + sin /,j cos vj ny + sin /,j sin vj nx. 
[701 

By assuming that there are no statistical correlations between ~vvl and ~bj (randomness of 
%), and in view of [70], 

- -T- -  
,71  

× [cos aj  cos /*j + sin % sin p.j cos (/3j - v j) I " 

When the number of measured interfaces is large, the summation can be approximated by 
an integration. Thus, 

1 _ {~__~J(~)} • ; ; f f  P(a'/3'l'L'v)d°tdfld~dv , [72] 
pv,~cos ~b [cos a cos /, + sin a sin /~ cos (/3-v)} 

where P(a,/3,1x, v) is a probability density function of a , /3 ,  p., v. 

vij 

>Y 

Figure 6. Angles aj  and Bj for v,j. 
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Z 

n 1 

4" 

Figure 7. Angles p.j and vj for n/ 

~ y  

On the other hand, in view of [61] and [62], the measured velocity v3 assocaated with 
the j t h  interface passing the double-sensored probe located in the z direction is given by 

tv,,j[cos /xj = Iv,j[ cos (hi. [73] 

In view of [73], and assuming that no statistical correlation exists between ~vo[ and /x j, it 
can be shown that 

~1__1_/(~) I~,~, , i / (~)l f f f f  P(ct,/3,tx,v) cosp. dad/3dtxdv , [74] 
j Iv ~jl = [ cos a ~os ~- +- ~ n  ~ -~-m ~ cos ( /3 -  v) I 

where 0 = a , p . =  < < zr/2 and 0 --< /3, v _-< 2rr. 
In view of [72], [74], and [41], the time-averaged local interracial area concentraUon 

is given m terms of the measured velocities of interfaces and the probability density function. 
Hence 

a,-' (xo,Yo, Zo) = 

3( 

1 

- t 75 ]  
' 7 "  , • 

[cos a cos /x + sin a sm /x cos ( / 3 - v ) ]  

f f f f P(a,/3,p,,v) cos/~ d a  d/3 d/x dv 
{cos a cos /z + sin a sin /~ cos ( / 3 - v ) l  

Equation [75] indicates that al can be calculated from measured values of the bubble or 
droplet  number  N, and of the passing velocities of interfaces using one double-sensored 
probe. However,  m addition to these it is ne~ssa ry  to assume a form of the probablhty 
density function P(a,/3,tx,v). For  this purpose, it is assumed that the interfaces are composed 
of spherical bubbles or droplets and the probe passes every part of bubble or droplet with 
an equal probability. Fur thermore,  it is assumed that the x and y direction components  of 
v,j are random. Under  these assumptions, /3 and v takes any value between 0 and 2 zr with 
equal probabili ty and 13 and v are statistically independent of each other. Then the prob- 
ability density function can be reduced to 

P(a,/3,1~,v)da d/3 dla. dv = P(a,~x,(/3-v))da dbL d ( / 3 - v )  

= l g ( a ) s i n  /x cos p. d a  dp, d ( / 3 - v ) ,  
71" 

[76] 
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where g(a) is a probability density function of angle a. By substituting [76] into [75] and 
in view of [43], one finally obtains the following result after carrying out the integration: 

a,-' (Xo,Y0,Zo) = 4N, 

1 

1 + .f312 g(a) sin a In ((1 + cos a)/sin a) da 
j-~,/2 g(a)cos  a da  

[77] 

Since the main flow is in the z direction, the major component of the interfacial velocity 
is also the z component if the mean flow velocity is not small compared with the fluctuating 
x and y components. In that ease, g(a) is considered to have a sharp peak at a = 0. Hence 
as a first approximation, g(a) may be represented by a delta function as 

g(a) = 8(a) .  [78] 

Then [77] can be simplified to 

a,-' (xo,Yo,Zo) = 4N, 
1 

= 4N, |l'v~--: " [79] 

The approximation given by [78] implies that the interracial velocity v~ has only the z 
component. Equation [79] has also been obtained by Sekoguchi et al. (1974a; 1974b), 
Sekoguchi (1982), Herringe et al. (1976), Veteau (1981), and Veteau & Chariot (1981) based 
on the bubble diameter distribution assuming spherical bubble. 

A more accurate approximation for g(a) may be given by 

1 
g(a) = m for 0 < a < a o , 

a o  

~ r  

= 0 f o r a o  < a < - - .  
2 

[8o] 

This form of g(a) implies that the angle a made by the interracial velocity and the z axis 
is random with an equal probability within the maximum angle of a0. Substituting [80] 
into [77], the interfacial area concentration becomes 

- '  (Xo,yo,Zo) [811 a t 

1 (oos oo)tao oo   1 - c o t ~  aoln - (sin~ ao) 

Therefore, by knowing the value of a0, the time-averaged local interfacial area concentration 
can be calculated from the measured values of Nr and v~j. a0 can be estimated from 
measured values of statistical parameters of interfacial velocity as explained elsewhere 
(Kataoka et al. 1984) (see also the Appendix). It is given by 

m 

sin 2ao 1 - (o']/~=l 2) [82] 
2 a o  - 1 + 3 

Thus by knowing the mean value and fluctuations of the z component interracial velocity, 
which are denoted by ~ and o',,  it is possible to estimate the value of ao. 

4. EXPERIMENTAL VALUE OF LOCAL INTER.FACIAL AREA CONCENTRATION 

As shown in the previous section, the time-averaged local interracial area concentration 
can be calculated from measured values of the bubble or droplet number per unit time and 
mean and fluctuating components of the interracial velocity using [8 I] and [82]. 
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Serizawa et al. (1974; 1975a; 1975b; 1975c) have measured the above mentioned pa- 
rameters in a i r -water  bubbly and slug flow in a vertical tube of inner diameter of 6 cm 
Under stationary and developed conditions, they measured the bubble number per unit 
time N,  and spectrum of passing velocity of interface Iv=l at various radial positions. The 
examples of the spectra of Iv=t are shown in figure 8. From these spectra, one can calculate 
the reciprocal of a harmonic mean of [v=l as 

T I 
~ 1 -  = "o Iv=l dlv:l, [83] 

where w(Iv=l) is the probability density function of Iv, I corresponding to the normalized 
2 of the fluctuaUon of ]V~l can spectrum shown in figure 8. Similarly, the square mean o'= 

be calculated from the spectra as 

= - So" Iv.I w(Iv=l) dlv=l 
2 

[84] 

where 

SO e~ = Iv=l .'(iv=l) ~v=l .  [85] 

The value of o'2,/~--~[ 2 is not measured in Serizawa's experiment. However, one can approx- 
imate this value as 

~,~1 ~ iv,:l~ , [86] 

which is calculated by [84] and [85] from the measured spectrum of Iv=l. Thus, one obtains 
the local interracial area concentration from [81] and [82] using the measured values of N, 
and spectrum of Iv,[. Here a0 calculated from [82] ranged from 0.17 to 0.39 rad for 
Serizawa's experiments (Serizawa et al. 1974; 1975a; 1975b; 1975c). 

Senzawa eta [  
Air-Water Bubbly Flow 
JG = 0.135 rn/s 

c f x,.,, 
A t / R = 0 7  
,,, ,.. 

.~ A rm:06 

o A T o ,  
tO 2.0 3.0 

Iv~f 

JL=I.03 m/s 
3/~rlR=.04 

_ ~ r / R  = 0" I 

10 20 3.0 
(m/s) 

Figure 8 Spectra of Ivffil for mr-water bubbly flow atj~ = 0.135 m/s andJL = 1 03 m/s at 
various radial positions (Serizawa et al.). 
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Figures 9-15 show some examples of the local interfacial area concentration profiles 
based on the above-described method and the experimental data of Serizawa et al. (1974; 
1975a; 1975b; 1975c). In the figures, r denotes a radial position and R denotes radius of 
flow passage. For bubbly flow the local interracial area concentration shows rather uniform 
values in the center region of the tube and higher values near the tube wall. A similar trend 
of interracial area concentration has been observed by Veteau (1981) and Veteau & Chariot 
(1981). The higher values suggest that in this type of bubbly flow the interracial transport 
of momentum and heat is higher near the tube wall. On the other hand, in slug flow and 
bubbly to slug transition flows the local interracial area concentration does not show an 
appreciable peak value near the tube wall as indicated in figures 13 and 14. However, higher 
values of the interracial area concentration appear at the central region of the tube. It has 
been already shown by Ishii et al. (1982) and Sekoguchi (1982) that the area-averaged 
interfacial area concentration is strongly dependent on two-phase flow regimes. However, 
the present study has demonstrated that a transverse profile of the local interracial area 
concentration is also strongly dependent on the flow regimes. These results indicate that 
the interracial transports of mass, momentum, and energy strongly depend on the overall 
flow regimes as well as on detailed transverse structures of flow. 

Figure 15 shows the radial profiles of various local parameters of two-phase flow along 
with the interracial area concentration. This figure suggests that the turbulent velocity of 
the liquid phase UL and the void fraction "~ are closely related to the local interracial area 
concentration as pointed out by Serizawa (1983) and Herringe et al .  (1976). The near wall 
peak of the interracial area concentration in this particular bubbly flow is matched by the 
peak of the void fraction. It is noted that the radial profile of the void fraction in bubbly 
flow strongly depends on inlet conditions (Sekoguchi et al. 1974a; 1974b; Sekoguchi 1982). 
Thus it is considered that the radial profile of the interfacial area concentration depends 
on inlet conditions. 

Here the local interfacial area concentration has been calculated from [81] and [82] 
using the experimental data obtained from one double-sensored probe. This proc~lure is 
based on several assumptions on statistical characteristics of the interface motion as described 
in the previous section, such as the randomness of the interfacial velocity and equilateral 
fluctuations of the velocity, etc. These assumptions are considered to be valid in the central 
region of bubbly flow. The randomness of bubble behavior in this region is experimentally 
supported by Serizawa et al. (1974; 1975a; 1975b; 1975c). However, in the very near the 
wall region of bubbly flow or slug flow, some of the assumptions are not completely valid. 

300 

E 200 
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Air-Water Bubbly Flow 
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°°oOooo~, 

j$ =0.135 m/s 

jL =0442 m/s 

I I I I I I I I I 
1.0 0.5 0 

Walt f i r  Center 
Figure 9. Radial profd¢ of a'~ for mr-water bubbly flow atj~ = 0.135 m/s andjL = 0.442 m/s 

calculated from the data of Scrizawa et aL 
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Air-Water Bubbly Flow 

JG:0.135 m/s 

JL=0737 m/s 
o 

0 0  0 0 0 0  o p  

o , i, , I i, ,, i 
tO 05 0 

Wall r/R Center 
Figure 10 R a ~ a l  profile of a,-' for mr -wa te r  bubbly flow a t j a  = 0.135 m / s  andJL = 0.737 m / s  

calculated from the data of Serizawa et al 

For slug flow, the applicability of the present method depends on the structure of the liquid 
slug section. If the liquid slugs have only a few bubbles, the interracial area is mainly 
determined by the surface area of big slug bubbles. Then the present method may not be 
accurate. However, if many small bubbles exist in the liquid slugs, these bubbles significantly 
contribute to the interracial area concentration. For such a case, the present method may 
still be applicable. The cases m figures 13 and 14 correspond to the second situation. 
Furthermore, for two-phase flow where fluid particles cannot be well defined, such as churn- 
turbulent flow, the above method may not be appropriate. For these circumstances, more 
information on the interfacial velocity is necessary for an accurate measurement of the local 
interracial area concentration. The three double-sensored probe method which is described 
in the previous section is suitable for this purpose. Such detailed measurements are strongly 
recommended for a better understanding of two-phase flow structures and interracial trans- 
port phenomena. 
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Figure 11 Radlal profile of a~ for mr-water bubbly flow atl~ = 0 135 m/s andlL = 1 03 m/s 

calculated from the data of Serizawa et aL 
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Figure 12. Radial profile of a~ for air-water bubbly flow at]~ = 0.268 m/s and]L = 1.03 m/s 
calculated from the data of Serizawa et aL 

5. CONCLUSIONS 

The local instantaneous formulation of the interracial area concentration has been 
introduced based on the concept of a distribution. Using a delta function and the interface 
equation, the local instantaneous interfacial area concentration has been defined. Then by 
integrating the local instantaneous interracial area concentration, spatial and time-averaged 
interfacial area concentrations have been obtained. For a dispersed two-phase flow the 
spatial-(linear-) averaged interfacial area concentration is given in terms of the number of 
interfaces per unit length and the harmonic mean of cos O j, where Oj is the angle between 
the normal vector of the j th  interface and averaging direction. On the other hand, the time- 
averaged interfacial area concentration is given in terms of the number of interfaces per 
unit time and the harmonic mean of ~v[ cos ~bj, where ~v,j[ is the interfacial velocity of the 
j t h  surface and ~j is the angle between v,~ and the normal vector of j t h  interface. 

Figure 13 
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Figure 14 Rachal profile of ~'~ for mr-water slug flow a t j a  = 0.402 m/s andjL = 1.03 m/s 

calculated from the data of Senzawa et aL 

Based on the local instantaneous formulation of the interfacial area concentration, 
several ergodic theorems concerning the averaged interracial area concentration have been 
derived. The overall ergodic theorem for the time and spatial averages has been obtained 
theoretically. For a stationary and developed two-phase flow, the local ergodic theorem is 
obtained. Both theorems are important in terms of practical applications and interpretations 
of experimental data. 

Based on these theoretical developments, several measurement methods for the inter- 
facial area concentration have been proposed and discussed in detail. The method using 
three double-sensored probes located in three independent directions has been proposed for 
a general application. It is shown that this method enables an accurate measurement of the 
local interracial area concentration. However, it is also pointed out that the required small 
size of the whole probe may be an engineering problem. 

A much simpler method using one double-sensored probe is also proposed and discussed 
in detail. By assuming certain statistical characteristics of the interracial motion, an expres- 
sion for the local interracial area concentration can be related to measurable quantities from 
a double-sensored probe. 
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Applying this one-probe method to experimental data, radial profiles of the local 
interracial area concentration have been obtained for air-water bubbly and slug flow. The 
local interfacial area concentration has a peak value near the tube wall in the bubbly flow, 
while in slug flow it has higher values in the central region of two-phase flow. These results 
demonstrated the applicability of the one double-sensored probe method for the measurement 
of the local interracial area concentration. 

The formulation of the local interracial area concentration and measuring methods 
developed in this study are basically applicable to any type of two-phase flow. A further 
experimental study utilizing these methods for measuring the interfacial area concentration 
is highly desirable. Such a detailed measurement of the local quantities of two-phase flow 
greatly increases the understanding of interfacial transport phenomena, structures of two- 
phase flow, and flow regimes. 
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m k  

Mtk  
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NOMENCLATURE 

interfacial area concentration 
local interracial area concentration (one dimensional) 
local instantaneous interracial area concentration 
spatial averaging of a,(x,y,z,t) 
volume averaging of a,(x,y,z,t) 
linear (z direction) averaging of a,(x,y,z,t) 
time averaging of a,(x,y,z,t) 
function of x and y 
determinant given by [64] and [66]-[68] 
function of x and y 
reciprocal of harmonic mean of cos 0j [30] 
direction cosines of n, 

direction cosines of risk 

function representing an interface 
function representing j th  interface 
acceleration due to gravity 
probability density function of a 
gradient of f(x,y,z,t) 
gradient of fj(x,y,z,t) 
heat transfer coefficient at interface 
enthalpy of k phase 
integration of a,(x,y,z,t) in domain V and [1 
integration of a~(x,y,z,t) in domain L and [1 
superficial velocity for gas and liquid 
length scale given by [31], reciprocal of number of interfaces per unit 
length 
length in z direction 
length scale at interface given by [4] 
mean mass transfer per unit area for k phase 
interracial force for k phase 
number 
unit normal vector of j th  interface 
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n~ 

n sk 
n x, ny ,  nz 
N, 
N~ 

Px 
P(a,B,Jx, v) 
e ( a , ~ , ( B - v ) )  

q~ 
q', 
q~' 
r 

R 
t 

Ill 

t~ 

T 
T~ 
uz 
V 

Iv, I, Iv, I ~ 
ll~,,I 
1/~,lcos 4' 
V~x 3, V~yj, V~z ! 

V~x, V:y, V~z 
[VL~[2, tV w[2, 
IV ,: [2 

V~ 

U ,~j 

U ~zj 

V 

x , y , z  

X o , Y o , Z o  

Z, 

Z 

I K A T A O K A  et al 

unit vector m the direction of probe 
unit vector m the direction of kth probe 
unit vector m x, y, z directions 
number of bubbles or droplets passing a point per unit time 
number of bubbles or droplets per unit length 
pressure of k phase 
probability density function of a , /3 , /~ ,  v 
probability density function of ct, p., ( /3 -v )  

mean conduction heat flux of k phase 

turbulent heat flux of k phase 
lnterfaclal heat flux 
radial position 
radius of flow passage 
time when average is taken 
fixed time 
time given by [34] 
temperature at interface 
bulk temperature of k phase 
turbulence velocity of liquid phase 
velocity of j t h  Interface 
arithmetic means of Iv v[ and ~v,j[2 
reciprocal of harmonic mean of ~v,j[ 
reciprocal of harmonic mean of ~v,j[cos ~bj 
x, y, and z components of v v 
arithmetic mean of v~j, v,yj, and v~j 
arithmetic mean of Iv=j[ 2, [v,yj[ 2, and Iv=j[ 2 

velooty of k phase 
passing velocity of j t h  interface through double-sensored probe 
passing velocity of j t h  interface through kth  double-sensored probe 
passing velocity of j t h  interface through double-sensored probe m z 
direction 
reciprocal of harmonic mean of Iv~j[ 
anthmeUc mean of ]V~zjl 
volume 
probablhty density function of Iv~l 
coordinates 
fixed point In x, y, and z coordinate 
z coordinate given by [22] 
axial coordinate 

Greek symbols 

~ o  

Bj 
3' 
F~ 
8(x ) 
At j, Atjk 

Ax 
As 
Oj 
~J 

void fraction 
volume fracuon of k phase 
angle between v,j and n~ 
angle gwen by [80] 
angle between ny and projection of v,j into x - y  plane 
constant 
mass generation of k phase 
delta function 
time lag of ( j th)  interface passing between sensor 1 and 2 of (kth) 
double sensored probe 
spacing in x direction 
distance between sensor 1 and 2 of double-sensored probe 
angle between n~ and nj 
angle between nz and nj 
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v/ 

Pk 
O" x ,  O ' y ,  O" z, 

T 

! 
T k 

¢(x) 
epk 
f~ 

angle between ny and projection of % into x - y  plane 
angle between ns and nj 
density of k phase 
root mean square of fluctuating components of v=j, v,yj, v~j, and tv,~jl 

time scale given by [39], reciprocal of number of interfaces passing a 
point per unit time 
average interfacial shear stress 
average viscous stress for k phase 
turbulent shear stress for k phase 
angle between nj and % 
arbitrary function 
energy dissipation for k phase 
time duration 

527 

Subscripts 
L liquid phase 
G gas phase 
i value at interface 
k k phase (gas or liquid) 
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APPENDIX 

Derivation of [82] 
As shown in [70], v,j is composed of x, y, and z components v~j, v,yj, and v,~j which 

are given by 

They should satisfy 

v~/ = ~,,j~sin ctj sin /3j nx, [A1] 

v,yj = ~v,/~in aj  cos /3j ny,  [A2] 

v~j = ~vu~cos aj  n~. [A3] 

v,/ = v~j + v,y/ + v~j .  [A4] 

If there is no preferred direction for an instantaneous transverse velocity,/3 has a probabihty 
density function h(/3) given by 

1 
h( /3 ) - -  2rr '  0 < / 3  < 2~r. [AS] 
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Then in view of [70] with the assumption for g(a) given by [80], one gets 

.~/2 ~02w 
= ~l.0 g(ct)sin a da h(B)sin ~ d~.n, = 0. 

Similarly, 

On the other hand, 

529 

[A6] 

On the other hand, from [A4], [A6], and [A7], 

~+I' = tv~l + + tv,,l ~ + ~v,,l ~. [AI2] 

Furthermore, from an assumption that the velocity fluctuations are equilateral, 

0 -2 = o ' 2  = o'2. [AI3] 

Then combining the above results given by [A9]-[AI3] it can be shown that 

sin 2no 1 - (o'~,/~-'~[ 2) 
2a0 -- 1 + 3 (o'2:/~"~12) ' [A14] 

[A]q 

.f•r/2 = g(a)cos a da. n~ = ~-~ sin a0 n,. [A8] 

Here no statistical correlations between ~v#[, a, and ~ have been assumed. 
The mean squares of velocity fluctuations are given by the following expressions. For 

the x components 

~ = ( v ~  - ~ ) ~  = Iv~l  ~ - ~v~l ~ = Iv~l  ~ 

fw/2 ~02'n' --~'I=-0 g(a)sin2a da h(~)sin2~ d~ [A9] 

2 4 C~o ) '  

for the y components 

1 I~ l sin 2a°} = o ' 2 ,  [A10] 
~ _= ( v , ,  - ~ ) ~  -- ~,,I ~ -- ~ ~-~ 4 ~ o  

and for the z components, 

.f'w/2 
0-+ = ( v +  - ~ ) +  = ~,~.1 + - +~1 + - ++1 ~ - o  g ( a ) c o s + a  d a  - ++1 + 

v,,, = o .  [ A T ]  


